

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-514542
(P2004-514542A)

(43) 公表日 平成16年5月20日(2004.5.20)

(51) Int.Cl.⁷

A61B 17/12

A61F 2/06

A61M 25/00

A61M 29/00

F 1

A 6 1 B 17/12

A 6 1 F 2/06

A 6 1 M 29/00

A 6 1 M 25/00 4 1 O Z

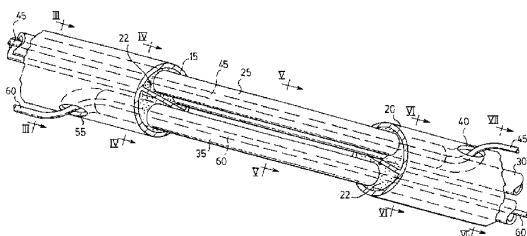
テーマコード(参考)

4 C 0 6 0

4 C 0 9 7

4 C 1 6 7

審査請求 未請求 予備審査請求 有 (全 46 頁)


(21) 出願番号	特願2002-549158 (P2002-549158)	(71) 出願人	503211150 ペン、イアン・エム カナダ国、ブイ6アール・1イー4、ブリ ティッシュ・コロンビア州、バンクーバー 、ペルビュー・ドライブ 4511
(86) (22) 出願日	平成13年12月14日 (2001.12.14)	(71) 出願人	500379071 シュコフ、ジョージ・エー アメリカ合衆国 カリフォルニア州 94 022 ロス・アルトス・ヒル、デ・ベル ・ロード 14440
(85) 翻訳文提出日	平成15年6月16日 (2003.6.16)	(71) 出願人	500379082 リッチ、ドナルド・アール カナダ国、ブイ6アール・1エム9、ブリ ティッシュ・コロンビア、バンクーバー、 ウエスト・サード・アベニュー 4443
(86) 國際出願番号	PCT/CA2001/001767	(71) 出願人	最終頁に続く
(87) 國際公開番号	W02002/047580		
(87) 國際公開日	平成14年6月20日 (2002.6.20)		
(31) 優先権主張番号	60/255,381		
(32) 優先日	平成12年12月15日 (2000.12.15)		
(33) 優先権主張国	米国(US)		

(54) 【発明の名称】内視鏡的プロテーゼ案内システム

(57) 【要約】

【課題】

【解決手段】膨張可能な膨張カテーテルは、内視鏡的プロテーゼを目標とする体内通路へと案内し、また、方向付けするために有効である。このカテーテルは、これの基端部に位置された第1の管状部材と、先端部に位置された第2の管状部材とを有する。第1の管状部材と第2の管状部材とは、互いに離間されている。また、膨張可能な部材(例えばバルーン)は、第2の管状部材の先端部に位置されている。第1のルーメンと第2のルーメンとが、第1の管状部材と第2の管状部材との各々に配置されている。第1のルーメンは、膨張可能なルーメンとして機能するように膨張可能な部材の内側に連通されている。また、第2のルーメンは、第1のガイドワイヤーを受ける。第1の管状部材と第2の管状部材とは、連結部材によって相互に連結されている。

【特許請求の範囲】**【請求項 1】**

膨張可能な膨張カテーテルであって、

このカテーテルの一部の基端部に配置された第1の管状部材と、カテーテルの先端部に配置された第2の管状部材とを具備し、これら第1の管状部材と第2の管状部材とは互いに離間されており、更に、

前記第2の管状部材の先端部に配置された膨張可能な部材と、

前記第1の管状部材と第2の管状部材との各々の中に配置された第1のルーメンと第2のルーメンとを具備し、第1のルーメンは、前記膨張可能な部材の内部に連通され、第2のルーメンは第1のガイドワイヤーを受け、また、前記第1の管状部材と第2の管状部材とは、連結部材によって相互に連結されている、膨張可能な膨張カテーテル。10

【請求項 2】

前記連結部材は、前記第1のルーメンを有する請求項1の膨張可能な膨張カテーテル。

【請求項 3】

前記連結部材は、前記第2のルーメンを有する請求項1の膨張可能な膨張カテーテル。

【請求項 4】

前記連結部材は、前記第1のルーメンと第2のルーメンの各々とを有する請求項1の膨張可能な膨張カテーテル。20

【請求項 5】

前記第1の管状部材と第2の管状部材との各々の中に配置され、第2のガイドワイヤーを受ける第3のルーメンを更に具備する請求項1乃至3のいずれか1の膨張可能な膨張カテーテル。20

【請求項 6】

前記連結部材は、前記第3のルーメンを有する請求項5の膨張可能な膨張カテーテル。

【請求項 7】

前記第1のルーメンは、第1の管状部材のほぼ全長にわたって延びている請求項1乃至6のいずれか1の膨張可能な膨張カテーテル。

【請求項 8】

前記第1のルーメンは、第2の管状部材の長さの一部に沿って延びている請求項1乃至6のいずれか1の膨張可能な膨張カテーテル。30

【請求項 9】

前記第2の管状部材は、第1の開口部を有し、前記第1のガイドワイヤーは、この開口部を介して第2のルーメンから外に出ることが可能な、請求項1乃至8のいずれか1の膨張可能な膨張カテーテル。

【請求項 10】

前記第3のルーメンは、第1の管状部材のほぼ全長にわたって延びている請求項1乃至9のいずれか1の膨張可能な膨張カテーテル。

【請求項 11】

前記第3のルーメンは、第1の管状部材の一部の長さに沿って延びている請求項1乃至9のいずれか1の膨張可能な膨張カテーテル。40

【請求項 12】

前記第1の管状部材は、第2の開口部を有し、前記第2のガイドワイヤーは、この開口部を介して第3のルーメンの中に入る請求項11の膨張可能な膨張カテーテル。

【請求項 13】

前記第1の開口部と第2の開口部とは、カテーテルの断面でみると実質的に反対側にある請求項12の膨張可能な膨張カテーテル。

【請求項 14】

前記第3のルーメンは、第2の管状部材のほぼ全長にわたって延びている請求項1乃至13のいずれか1の膨張可能な膨張カテーテル。

【請求項 15】

10

20

30

40

50

前記第3のルーメンは、前記膨張可能な部材の先端部を通って延びている請求項1乃至14のいずれか1の膨張可能な膨張カテーテル。

【請求項16】

前記第1の管状部材は、第1の通路と第2の通路とを有する請求項1乃至15のいずれか1の膨張可能な膨張カテーテル。

【請求項17】

前記第2の管状部材は、第1の通路と第2の通路とを有する請求項1乃至15のいずれか1の膨張可能な膨張カテーテル。

【請求項18】

前記第1の管状部材と第2の管状部材との各々は、第1の通路と第2の通路とを有する請求項1乃至15のいずれか1の膨張可能な膨張カテーテル。 10

【請求項19】

前記第1のルーメンと第2のルーメンとは、第1の通路内に配置されている請求項16乃至18のいずれか1の膨張可能な膨張カテーテル。

【請求項20】

前記第3のルーメンは、第2の通路内に配置されている請求項16乃至18のいずれか1の膨張可能な膨張カテーテル。

【請求項21】

前記膨張可能な部材は、バルーン部を有する請求項1乃至20のいずれか1の膨張可能な膨張カテーテル。 20

【請求項22】

前記第1の管状部材と第2の管状部材とは、ほぼ円形の断面を有する請求項1乃至21のいずれか1の膨張可能な膨張カテーテル。

【請求項23】

バルーン型膨張カテーテルであって、

このカテーテルの一部の基端部に配置された第1の管状部材と、カテーテルの先端部に配置された第2の管状部材とを具備し、これら第1の管状部材と第2の管状部材とは、互いに離間されており、更に、

前記第2の管状部材の先端部に配置されたバルーン部材と、

前記第1の管状部材と第2の管状部材との各々の中に配置された第1のルーメンと第2のルーメンと第2のルーメンとを具備し、第1のルーメンは膨張可能な部材と連通され、第2のルーメンは第1のガイドワイヤーを受け、第3のルーメンは第2のガイドワイヤーを受けており、 30

前記第1の管状部材と第2の管状部材とは、前記第1のルーメンと第2のルーメンと第3のルーメンとのうちの少なくとも1つによって、相互に連結されているバルーン型膨張カテーテル。

【請求項24】

前記第1の管状部材と第2の管状部材とは、前記第1のルーメンと第2のルーメンと第3のルーメンとのうちの少なくとも2つによって相互に連結されている請求項23のバルーン型膨張カテーテル。 40

【請求項25】

前記第1の管状部材と第2の管状部材とは、前記第1のルーメンと第2のルーメンと第3のルーメンとの各々によって相互に連結されている請求項23のバルーン型膨張カテーテル。

【請求項26】

前記第1のルーメンは、前記第1の管状部材のほぼ全長にわたって延びている請求項23乃至25のいずれか1のバルーン型膨張カテーテル。

【請求項27】

前記第1のルーメンは、前記第2の管状部材の一部の長さに沿って延びている請求項23乃至25のいずれか1のバルーン型膨張カテーテル。 50

【請求項 2 8】

前記第2の管状部材は、第1の開口部を有し、前記第1のワイヤーガイドは、この開口部を介して第2のルーメンから外に出ることが可能な、請求項23乃至27のいずれか1のバルーン型膨張カテーテル。

【請求項 2 9】

前記第3のルーメンは、前記第1の管状部材のほぼ全長にわたって延びている請求項23乃至27のいずれか1のバルーン型膨張カテーテル。

【請求項 3 0】

前記第3のルーメンは、前記第1の管状部材の一部の長さに沿って延びている請求項23乃至27のいずれか1のバルーン型膨張カテーテル。

【請求項 3 1】

前記第1の管状部材は、第2の開口部を有し、前記第2のガイドワイヤーは、この開口部を介して第3のルーメンの中に入る請求項30のバルーン型膨張カテーテル。

【請求項 3 2】

前記第1の開口部と第2の開口部とは、カテーテルの断面で見ると実質的に反対側にある請求項31のバルーン型膨張カテーテル。

【請求項 3 3】

前記第3のルーメンは、第2の管状部材のほぼ全長にわたって延びている請求項23乃至27のいずれか1のバルーン型膨張カテーテル。

【請求項 3 4】

前記第3のルーメンは、前記膨張可能な部材の先端部を通って延びている請求項23乃至33のいずれかのバルーン型膨張カテーテル。

【請求項 3 5】

前記第1の管状部材は、第1の通路と第2の通路とを有する請求項23乃至34のいずれか1のバルーン型膨張カテーテル。

【請求項 3 6】

前記第2の管状部材は、第1の通路と第2の通路とを有する請求項23乃至34のいずれか1のバルーン型膨張カテーテル。

【請求項 3 7】

前記第1の管状部材と第2の管状部材との各々は、第1の通路と第2の通路とを有する請求項23乃至34のいずれか1のバルーン型膨張カテーテル。

【請求項 3 8】

前記第1のルーメンと第2のルーメンとは、第1の通路内に配置されている請求項23乃至37のいずれか1のバルーン型膨張カテーテル。

【請求項 3 9】

前記第3のルーメンは、第2の通路内に配置されている請求項23乃至37のいずれか1のバルーン型膨張カテーテル。

【請求項 4 0】

前記第1の管状部材と第2の管状部材とは、ほぼ円形の断面を有する請求項23乃至37のいずれか1のバルーン型膨張カテーテル。

【請求項 4 1】

ガイドカテーテルと、

1対のガイドワイヤーと、

請求項23乃至40のいずれか1のバルーン型膨張カテーテルとを具備する、カテーテル法のキット。

【請求項 4 2】

内視鏡的プロテーゼが取付けられたバルーンカテーテルであって、このカテーテルの一部の基端部に配置された第1の管状部材と、カテーテルの先端部に配置された第2の管状部材とを具備し、これら第1の管状部材と第2の管状部材とは、互いに離間されており、更に、

10

20

30

40

50

前記第2の管状部材の先端部に配置されたバルーン部材と、このバルーン部材に取付けられた拡張可能な内視鏡的プロテーゼと、第1の管状部材と第2の管状部材との各々に配置された第1のルーメンと第2のルーメンとを具備し、第1のルーメンは膨張可能な部材の内部と連通され、第2のルーメンは第1のガイドワイヤーを受け、また、前記第1の管状部材と第2の管状部材とは、連結部材によって相互に連結されているバルーンカテーテル。

【請求項43】

前記連結部材は、前記第1のルーメンを有し、請求項42のカテーテルのようなバルーン型膨張カテーテル。

【請求項44】

前記連結部材は、前記第2のルーメンを有する請求項42のバルーン型膨張カテーテル。

【請求項45】

前記連結部材は、前記第1のルーメンと第2のルーメンとの各々を有する請求項42のバルーン型膨張カテーテル。

【請求項46】

第1の管状部材と第2の管状部材との各々の中に配置され、第2のガイドワイヤーを受ける第3のルーメンを更に具備する請求項42乃至45のいずれか1のバルーン型膨張カテーテル。

【請求項47】

前記連結部材は、前記第3のルーメンを有する請求項46のバルーン型膨張カテーテル。

【請求項48】

前記第1の管状部材は、第1の管状部材のほぼ全長にわたって伸びている請求項42乃至47のいずれか1のバルーン型膨張カテーテル。

【請求項49】

前記第1のルーメンは、第2の管状部材の一部の長さに沿って伸びている請求項42乃至47のいずれか1のバルーン型膨張カテーテル。

【請求項50】

前記第2の管状部材は、第1の開口部を有し、前記第1のガイドワイヤーは、この開口部を介して第2のルーメンから外に出ることが可能な、請求項49のバルーン型膨張カテーテル。

【請求項51】

前記第3のルーメンは、第1の管状部材のほぼ全長にわたって伸びている請求項46のバルーン型膨張カテーテル。

【請求項52】

前記第3のルーメンは、第1の管状部材の一部の長さに沿って伸びている請求項46のバルーン型膨張カテーテル。

【請求項53】

前記第1の管状部材は、第2の開口部を有し、前記第2のガイドワイヤーは、この開口部を介して第3のルーメン中に入る請求項52のバルーン型膨張カテーテル。

【請求項54】

前記第1の開口部と第2の開口部とは、カテーテルの断面で見ると実質的に反対側にある請求項50のバルーン型膨張カテーテル。

【請求項55】

前記内視鏡的プロテーゼは、リーフ部分が取付けられた拡張可能な部分を有する請求項42乃至54のいずれか1のバルーン型膨張カテーテル。

【請求項56】

前記内視鏡的プロテーゼのリーフ部分は、第1の開口部と長手方向にほぼ整列されている請求項55のバルーン型膨張カテーテル。

【請求項57】

前記第1の管状部材と第2の管状部材とは、ほぼ円形の断面を有する請求項42乃至56

10

20

30

40

50

のいずれか1のバルーン型膨張カテーテル。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、膨張可能な膨張カテーテル、特に、バルーンタイプの膨張カテーテルと、更には、カテーテル法のキット、特に、内視鏡的プロテーゼが取付けられたバルーン膨張カテーテルとに関する。

【0002】

【従来の技術】

当分野で知られているように、動脈瘤は、動脈の壁内にできる異常な隆起である。ある場合には、この隆起部は、動脈から外へ向かって全方向になめらかに隆起している。これは、“紡錘状の動脈瘤”として知られている。また、他の場合には、この隆起部は、動脈の一方の側から隆起した囊の形状を有する。これは、“囊状の動脈瘤”として知られている。

【0003】

動脈瘤は体の動脈内にできるが、脳卒中につながるのは脳に生じた場合のみである。脳に生じる殆どの囊状動脈瘤は、大脳の血管から伸びた頸状部を有し、この血管から外へ突き出して囊を形成するように広がる。

【0004】

このような動脈瘤によって、幾つかの異なる方法で問題が生じる。例えば、動脈瘤が破裂すると血液が、脳に、もしくは、蜘蛛膜下のスペース（即ち、脳をぴっちりと取り囲むスペース）に入る。後者、蜘蛛膜下のスペースで生じるのは、動脈瘤の蜘蛛膜下出血として知られている。この前には、恶心、嘔吐、複視、首部のこわばり及び意識の喪失のうち1つ以上の症状があらわれる。動脈瘤の蜘蛛膜下出血は、即座の治療が必要な医療上の緊急事態である。実際に、この状態になった患者のうち10-15%が治療のために病院に到着する前に亡くなっている。また、この状態になった患者のうち50%を超える人が、出血後30時間以内に亡くなっている。そして、この状態になって生き残った患者のほぼ半数が、永久的な脳卒中に苦しむことになる。また、脳卒中は、蜘蛛膜下出血によって引き起こされた大脳の血管内の血管痙攣によって、この出血の1-2週間後に起きることが多い。また、動脈瘤は、あまり一般的ではないが、出血に関連しない問題を引き起こすこともある。例えば、動脈瘤は、自身の中に、動脈から分裂して離れて下方へ運ばれ、そこで動脈の枝部を詰まらせて脳卒中を起こす潜在性をもつようになる血塊を形成する。更に、動脈瘤はまた、神経（これによって麻痺または一方の目の視覚異常もしくは顔面の感覚の異常を生じる可能性がある）もしくは隣接する脳（これによって発作が起こる可能性がある）を圧迫する可能性もある。

【0005】

動脈瘤、特に脳の動脈瘤が及ぼす致命的となり得る影響を考えて、当分野では、様々なアプローチによって動脈瘤の治療に取り組んできた。

【0006】

一般に動脈瘤は、外科技術を利用して血管の外側から、または、内視鏡技術によって内側から治療される（後者は、仲介（即ち、外科技術でない）技術によって幅広い方向で）。

【0007】

外科技術は通常、患者の頭蓋の開口部の形成を必要とする開頭術を伴うので、外科医は、この開口部を介して直接的に脳で作業するために器具を挿入可能である。1つのアプローチでは、脳は動脈瘤のできた血管を露出するように収縮され、続いて、外科医は、動脈瘤の首部を挟むようにクリップを位置させて、動脈中の血液が動脈瘤に入るのを防止する。このクリップはまた、動脈瘤内に血塊がある場合、この血塊が動脈に入るのを防ぎ、脳卒中の発生を未然に防止する。クリップを正しく位置付けると、動脈瘤は、数分の間に取り除かれる。外科技術は、動脈瘤のための最も一般的な治療法である。残念なことに、こうした状況に処置するための外科手術は、患者に高いリスクを負わせる主要な手術とみなさ

10

20

30

40

50

れであり、患者が、手術を切り抜けて生きる可能性を有するような強い力を持つことが必然的に必要となる。

【0008】

上述されたように、内視鏡技術は非外科技術であり、典型的には血管造影法を使用して、カテーテル案内システムを用いて行われるものである。特に、公知の内視鏡技術は、必然的に、動脈の血管が動脈瘤内に入るのを防止する部材で動脈瘤を封じるカテーテル案内システムを用いる。この技術は、動脈塞栓術として広く知られている。このようなアプローチの1つの例は、ガガリエルム着脱コイル (Guglielmi Detachable Coil)

であり、これは、ステンレススチールの案内用ワイヤーに取付けられたプラチナ製コイルを用いるシステムと電解分離とによって動脈瘤の大動脈内動脈瘤閉塞を生じる。かくして、プラチナ製コイルが動脈瘤内に位置されると、このコイルは、電解分離によってステンレススチール案内ワイヤーから取り外される。特に、患者の血液と塩インフセート (saline infusate) が伝導性溶液として働く。陽極はステンレススチールの案内システムであり、陰極は患者の鼠径部 (groin) に位置された碎ニードルである。電流がステンレススチールの案内ワイヤーを通って伝えられると、プラチナ製のコイル (プラチナ製のコイルは、言うまでもなく電解の影響を受けない) の近くのステンレススチールの分離区画の絶縁部分で電解分離が生じる。他のアプローチでは、動脈瘤の囊を充填するためにセルロースアセテートポリマーのような材料を使用することが必要である。これらの内視鏡的アプローチは当分野での進歩だが、特に、こうした内視鏡的アプローチのリスクに、治療中に動脈瘤が破裂したり装置もしくは動脈瘤からの血塊の末端の塞栓により卒中が引き起こされることなどがあり、不都合である。また、こうした技術を用いて内視鏡的な動脈瘤の閉塞を行うと長期間にわたって色々の心配が生じる。特に、充填部材が内動脈瘤で再配置されることと、フォローアップの血管造影において動脈瘤の再現が見られることが心配される。

【0009】

上述された外科のクリッピング技術もしくは内視鏡的塞栓技術を特に用いての治療が困難なことが判明している脳の動脈瘤の1つの例が、末端基部動脈で起こったものである。このタイプの動脈瘤は通常、基部動脈の分岐点にでき、弱く外に膨れる。このタイプの動脈瘤の治療を成功させるのは、非常に難しい。その理由は、これが全てではないが、外科手術のクリップを配置させている間、全ての脳幹の穿孔する血管が残されることが避けられないためである。

【0010】

残念なことに、特定の患者の場合、動脈瘤のサイズ、形状並びに／もしくは場所によって、外科のクリッピングと内視鏡の塞栓との両方が不可能な場合がある。一般に、このような患者の予後は良くない。

【0011】

内視鏡的な動脈瘤閉塞の分野での重要な進歩が、1999年8月19日に発行された国際特許出願番号WO99/40873号と、2000年8月12日に発行された国際特許出願番号WO00/47134号と(いずれもMarottaなどの名前)に説明されている。Marotta装置は、“運ぶのが困難な”動脈瘤の区画へと進められ、そこで動脈瘤の開口部の閉鎖を成して動脈瘤の閉塞をなし得ることから、非常に効果が高い。

【0012】

当分野には、こうした著しい進歩にも関わらず、いまだ改良の余地がある。例えば、Marotta装置は、動脈瘤の開口部を閉鎖するためのいわゆる“リーフ部分”を有している。適当に整列されると、リーフ部分は、動脈瘤を閉塞するのに有効である。

【0013】

【発明が解決しようとする課題】

しかしながら、従来のバルーン型膨張カテーテルでは、典型的には目標とする体内通路に関連して特別な方向付けが必要ないステントを運ぶために用いられるものであることから

10

20

30

40

50

、困難である。更に困難なのは、M a r o t t a 装置を分岐された体内通路へと案内及び適当に方向付けしようとする場合である。

【 0 0 1 4 】

従って、案内及び方向付け可能なカテーテルと、体内通路の内視鏡的プロテーゼとを有することが望ましい。

【 0 0 1 5 】

本発明の目的は、新規の膨張可能な膨張カテーテルを提供することである。

【 0 0 1 6 】

本発明の他の目的は、新規のバルーン型膨張カテーテルを提供することである。

【 0 0 1 7 】

本発明の更なる目的は、新規のカテーテル法キットを提供することである。

【 0 0 1 8 】

本発明の更なる他の目的は、新規の内視鏡的プロテーゼた取付けられたバルーン型膨張カテーテルを提供することである。

【 0 0 1 9 】

【課題を解決するための手段】

本発明は、一態様では、

カテーテルの一部の基端部に配置された第1の管状部材と、

カテーテルの先端部に配置された第2の管状部材とを具備し、これら第1の管状部材と第2の管状部材とは互いに離間されており、更に、

第2の管状部材の先端部に配置された膨張可能な部材と、第1の管状部材と第2の管状部材との各々の中に配置された第1のルーメンと第2のルーメンとを具備し、第1のルーメンは膨張可能な部材の内部に連通され、第2のルーメンは第1のガイドワイヤーを受け、また、第1の管状部材と第2の管状部材とは、連結部材によって相互に連結されている、膨張可能な膨張カテーテルを提供する。

【 0 0 2 0 】

他の態様では、本発明は、

カテーテルの一部の基端部に配置された第1の管状部材と、

カテーテルの先端部に配置された第2の管状部材とを具備し、これら第1の管状部材と第2の管状部材とは、互いに離間されており、更に、

第2の管状部材の先端部に配置されたバルーン部材と、

第1の管状部材と第2の管状部材との各々の中に配置された第1のルーメンと第2のルーメンと第2のルーメンとを具備し、第1のルーメンは膨張可能な部材と連通され、第2のルーメンは第1のガイドワイヤーを受け、第3のルーメンは第2のガイドワイヤーを受けしており、第1の管状部材と第2の管状部材とは、第1のルーメンと第2のルーメンと第3のルーメンとのうちの少なくとも1つによって、相互に連結されているバルーン型膨張カテーテルを提供する。

【 0 0 2 1 】

また、更なる他の態様では、本発明は、

ガイドカテーテルと、

1対のガイドワイヤーと、

カテーテルの一部の基端部に配置された第1の管状部材と、カテーテルの先端部に配置された第2の管状部材とを具備し、これら第1の管状部材と第2の管状部材とは、互いに離間されており、更に、第2の管状部材の先端部に配置されたバルーン部材と、

第1の管状部材と第2の管状部材との各々の中に配置された第1のルーメンと第2のルーメンと第2のルーメンとを具備し、第1のルーメンは膨張可能な部材と連通され、第2のルーメンは第1のガイドワイヤーを受け、第3のルーメンは第2のガイドワイヤーを受けしており、

第1の管状部材と第2の管状部材とは、第1のルーメンと第2のルーメンと第3のルーメンとのうちの少なくとも1つによって、相互に連結されているバルーン型膨張カテーテル

10

20

30

40

50

とを具備するカテーテル法のキットを提供する。

【0022】

更なる態様では、本発明は、

カテーテルの一部の基端部に配置された第1の管状部材と、カテーテルの先端部に配置された第2の管状部材とを具備し、これら第1の管状部材と第2の管状部材とは、互いに離間されており、また、

第2の管状部材の先端部に配置されたバルーン部材と、

このバルーン部材に取付けられた膨張可能な内視鏡的プロテーゼと、第1の管状部材と第2の管状部材との各々に配置された第1のルーメンと第2のルーメンとを具備し、第1のルーメンは膨張可能な部材の内部と連通され、第2のルーメンは第1のガイドワイヤーを受け、また、前記第1の管状部材と第2の管状部材とは連結部材によって相互に連結されている、内視鏡的プロテーゼが取付けられたバルーンカテーテルを提供する。

【0023】

かくして、本発明の発明者は、内視鏡的プロテーゼを目標とする体内通路まで案内してこのプロテーゼを体内通路に対して方向付けるために効果的に使用され得るカテーテルを考案した。本発明のカテーテルは、上述したMarotta装置のような内視鏡的プロテーゼを案内及び方向付けするのに効果的である。本発明のカテーテルの特徴は、互いに離間されて連結部材によって相互に連結された2つの管状部材を有することである。連結部材の性質は、離間された管状部材に対して单一の連続的な管状部材と比べるとより容易にトルク即ちねじり力を与える限り、特に限定されない。一実施形態では、これは、2つの管状部材の直径を合わせたものよりも小さい断面の直径を有するように選択された連結部材によって果される。好ましくは、連結部材は、カテーテルの先端部の膨張可能な部材（例えばバルーン）を膨張させ、並びに／もしくは、目標とする体内通路にカテーテルを進めるのに用いられるガイドワイヤーを受けるために用いられる1つ以上のルーメンの形状を有する。

【0024】

【発明の実施の形態】

本発明のカテーテルの様々の好ましい実施形態を、Marottaの内視鏡的プロテーゼを参照して説明するが、これを参照するのは単に例示が目的である。当分野の当業者は、本発明のカテーテルが他の内視鏡的プロテーゼを、特別な方法で方向付けするのが望ましい場所に効果的に案内及び方向付けするために使用できることを、すぐに理解されるだろう。

【0025】

図1-7を参照すると、バルーン型膨張カテーテル10が示されている。バルーンカテーテル10は、第1の管状部材15と第2の管状部材20とを有する。第1の管状部材15の基端部には、ルーエルロック(Luer lock)12(一部だけ図示されている)もしくは同様の装置が配置されている。第1の管状部材15と第2の管状部材20とは、同様のデザインを有し、これら各々は、“D”字形の通路を有するいわゆる“対のD(double-D)”断面を有する。これらは、特に図2-4、6、7で見ることができる。

【0026】

第1の管状部材15と第2の管状部材20とは、3つのルーメン25、30、35によって相互に連結されている。図示されているように、ルーメン25、30、35は、第1の管状部材15と第2の管状部材20とを離間する機能を果している。長手方向のスペースは、好ましくは約10cm未満、更に好ましくは約1乃至約8cmの範囲内、最も好ましくは約1cm乃至約5cmの範囲内である。ルーメン25、30、35は、第1の管状部材15と第2の管状部材20との中に接着剤22によって固定されている。

【0027】

ルーメン25は、第1の管状部材15を通って第2の管状部材20の一部中へと延びている。かくして、ルーメン25の基端部は、従来の方法でルーエルロック12から出ている

10

20

30

40

50

。第2の管状部材20は、ルーメン25と連絡された開口部40を有する。図示されているように、ルーメン25は、開口部40から外へ出るガイドワイヤー45を受けている。

【0028】

第2の管状部材20の先端部には、膨張可能なバルーン50が取着されている。このバルーン50の性質と、第2の管状部材20への接続とは、従来のとおりであり、当分野の当業者の知識の範囲内である。

【0029】

ルーメン30は、第1の管状部材15と第2の管状部材20とを通じて延び、バルーン50の内側と連通された先端開口部(図示されず)を有する。ルーメン30の基端部は、従来のようにルーエルロック12から出ている。かくして、当分野の当業者は、ルーメン30がバルーン50の膨張収縮のために用いられるいわゆる膨張ルーメンであると理解されるだろう。

【0030】

ルーメン35は、第1の管状部材15の一部から第2の管状部材20を通じてバルーン50から出るように延びている。第1の管状部材15は、ルーメン35と連絡された開口部55を有する。図示されているように、ルーメン35は、開口部55を通してガイドワイヤー60を受けている。このルーメン35のガイドワイヤー60は、バルーン50から外に出ている。

【0031】

前記ルーメン25は、いわゆる“オーヴァー・ザ・ワイヤー(over-the-wire)”構成のガイドワイヤー45を受け、他方で、ルーメン35は、いわゆる“モノレール”構成のガイドワイヤー60を受けている。“モノレール”構成を用いれば、ガイドワイヤー60の比較的急な交換も容易である。これについては、例えば“モノレール”型の案内システム及びこののようなシステムを用いたガイドワイヤーの急な交換についての一般的な説明として本明細書で参照されている文献と米国特許番号4,748,982(Horzewskiなどへの)とを参照してほしい。いうまでもなく、ルーメン35が“オーヴァー・ザ・ワイヤー”構成及び効果的に曲がる“二重のオーヴァー・ザ・ワイヤー”構成のガイドワイヤー60とを受け得るようにカテーテル10を改良することも可能である。

【0032】

当分野の当業者によって理解されるように、第1の管状部材15並びに第2の管状部材20は、離間されて配置されており(即ち、不連続的な部分を有する単一の管状部材と等しい)、ルーメン25、30、35によって互いに連結されている。これによって、第1の管状部材15と第2の管状部材20とは、単一の連続した管状部材が用いられる構成(即ち、非連続的な部分がない)と比べてより容易に、互いに対してもトルクを与えられたりねじられたりすることが可能である。このように第1の管状部材と第2の管状部材との間に与えられる相対的な程度の自由によって、バルーン50に取付けられた内視鏡的プロテーゼの方向付けが、以下に詳しく説明するように容易にされる。

【0033】

図8を参照すると、前述したMarotta装置と同様の構成の内視鏡的プロテーゼ100が示されている。内視鏡的プロテーゼ100は、本体105を有する。この本体105は、基端部110と先端部115とを有する。内視鏡的プロテーゼ100は、本体105に設けられたリーフ部分120を更に有する。図示されているように、このリーフ部分120は、首部125とヘッド部130とを有する。ヘッド部130は、首部125よりも幅が狭い。図示された実施形態では、リーフ部分120のヘッド130は、先端部115とは逆へ延びている(即ち、リーフ部分120のヘッド130は基端部110の方を向いている)。

【0034】

本体105は、1対の支柱145、150によって互いにつなげられた1対のリング135、140を更に有する。図示された実施形態では、リーフ部分120はリング135に

10

20

30

40

50

接続されている。支柱 145、150 は、好ましくは、進行を向上させるように可撓性が最大にされると同時に、プロテーゼ 100 に十分な強度を与えるような大きさにされている。支柱 145、150 の目的は、リング 135、140 を互いに接続させることである。また、もう 1 つの目的は、プロテーゼ 100 が、目標とする体内通路に進められるよう十分に可撓性を有するように、また、目標とする体内通路内の適当な場所で固定されるよう十分に膨張可能なようにすることである。支柱 145、150 は、プロテーゼ 100 が膨張している間は（即ち、プロテーゼ 100 が正しく位置された後は）特に重要ではない。更に、当分野の当業者には明らかであると思われるが、リーフ部分 120 は、プロテーゼ 100 の基端部 110 と先端部 115 とに対して独立して動作可能である（図示された実施形態では、リーフ部分 120 は、リング 135、140 に対して独立して動作可能である）。

【0035】

図 9 を参照すると、プロテーゼ 100 は、従来の方法でカテーテル 10 のバルーン 50 に取付けられている。示されているように、プロテーゼ 100 は、リーフ部分の首部 120 とヘッド 130 が第 2 の管状部材の開口部 40 と長手方向に並べられるようにバルーン 50 に取付けられる。

【0036】

図 10 を参照して、バルーン 50 に取付けられたプロテーゼ 100 の案内及び配置とを説明する。

【0037】

ここには、1 対の分岐した動脈 220、225 へと二股に分かれる合流点 205 で終わる基部 (b a s i l a r) 動脈 200 が示されている。合流点 205 と分岐動脈 225 との間に、動脈瘤 230 ができている。この動脈瘤 230 は、開口部 235 (説明のために拡大して示されている) を有しており、この動脈瘤 230 には、この開口部を介して血液が入り栄養が補給される。

【0038】

ガイドワイヤー 45、60 は、好ましくは、2000 年 2 月 17 日に (R i c c i などに) 発行された国際特許出願番号 WO 00/07525 に説明されているようなガイドワイヤー案内システムを用いて分岐した動脈 220、225 に案内される。

【0039】

バルーン 50 に取付けられたプロテーゼ 100 を有する次のカテーテル 10 (図 9) は、図 1 に示された構成を用いて案内ガイドワイヤー 45、60 によって進められる。バルーン 50 が合流点 205 に近づいた際に、ガイドワイヤー 45 が接近開口部 40 (a p p r o a c h o p e n i n g) と整列することによって、第 1 の管状部材は自然にトルクを与えられ、即ちねじり作用を受ける。このようにトルクを与える作用即ちねじりの作用は、ルーメン 25、30、35 に、続いて、第 2 の管状部材 20 に伝えられる。受けられたトルクを与える作用即ちねじりの作用を受けて、第 2 の管状部材は自然に、ルーメン 25、30、35 が比較的ねじれない、また、開口部 40 から外に出たガイドワイヤー 45 の一部とこれに隣接したカテーテル 10 の一部分も比較的ねじれないような位置につく。(i) 開口部 40 とプロテーゼ 110 のリーフ部分 120 とが長手方向に整列することと、(ii) 第 1 の管状部材 15 と第 2 の管状部材 20 とが離間されていること、とが組み合わされると、プロテーゼのリーフ部分 120 が動脈瘤 230 の開口部 235 と実質的に整列するように方向付けられるので、効果的に、容易に“ねじれない”効果を果たせる。

【0040】

内視鏡的プロテーゼ 100 が正しい位置につくとバルーン 50 は膨張されて、リング 135、140 に径方向外方への力を働かせる。この影響で最初に、基部動脈 200 の壁に対してリング 140 が膨張し、分岐動脈 220 内でリング 135 が膨張する。バルーン 50 の膨張が続くにつれて、バルーン 50 の一部分がリーフ部分 120 の首部 125 と頭部 130 とに付勢し、この結果、リーフ部分 120 が、動脈瘤 230 の開口部 235 の閉鎖を生じるような方法で分岐動脈 220 の壁に対して付勢する。

10

20

30

40

50

【0041】

バルーン50は次に収縮されて、ガイドワイヤー45、60と共に内視鏡的プロテーゼ100から引き抜かれる。図示された実施形態では、内視鏡的プロテーゼ100は、リング135、140が分岐動脈220、基部動脈200の夫々の壁に対して付勢されることによって所定位置に固定されている。更に、図示された実施形態において、リーフ部分120は、合流点205へ血液が流れる力と、分岐動脈220中に先端部115を進めるように本体105が撓む際の内在する力との組み合わせによって所定位置に固定される。リーフ部分120が開口部235を閉鎖すると、動脈瘤230は図11に見られるように除去される。

【0042】

動脈瘤230の開口部235が動脈の壁の上面に対してオフセットされる場合、このようなオフセットの角度は、当該の管解剖学(the vascular anatomy)の3Dレンダリング(3-D rendering)を含む大脳の血管造影技術の当業者によって決定され得る。解剖学上のオフセット角度が決定されると、プロテーゼ100は、リーフ部分120の首部125と頭部130とが第2の管状部材20の開口部40から長手方向に同じ角度だけオフセットされるように、バルーン50に取付けられ得る。これによって、動脈瘤230の開口部235を覆うようなリーフ部分120の予測可能な位置付け(position)を容易にする。

【0043】

本発明は、実例の実施形態と例とを参照して説明されてきたが、この説明は限定的なものではない。かくして、実例の実施形態の様々な変形例は、上述の説明を読めば、本発明の他の実施形態と同様に当分野の当業者には明らかであろう。例えば、好ましい実施形態を参照して説明された管状部材はいわゆる対のDの断面を有しているが、D(即ち、一方の通路は円形の断面を有し、他方はD字形状の断面を有する)などの他の断面を有する管状部材を使用することも可能である。また、個々のルーメンを有する管状部材を使用することも可能である。更に、図示された実施形態は上述されたMarrott装置の特定の実施形態に関連するが、効果的に、目標とする体内通路に特に向けさせることが可能な、本発明の内視鏡的プロテーゼを備えたカテーテルを使用することも可能である。これには、上述されたMarrottなどへの国際特許出願で開示されているステントや他の膨張可能なプロテーゼが含まれる。例えば、単一の膨張可能な留め手段(例えば膨張可能な管状部材など)もしくは3つ以上の膨張可能な留め手段(例えば膨張可能な管状部材など)を用いてプロテーゼを組立てることが可能である。かくして、請求項はこのような変形例もしくは実施形態をカバーすると考えられる。

【0044】

本明細書で言及した全ての刊行物、特許、特許出願を、これら刊行物、特許もしくは特許出願が特に及び個々に参照されてそっくりそのまま組み入れられるのと同程度まで、そっくりそのまま参照して本明細書に組み入れる。

【図面の簡単な説明】

【図1】本発明のカテーテルの好ましい1実施形態の斜視図を示す。

【図2】図1の領域Aを拡大した図を示す。

【図3】図2のI—I-I—I線に沿った断面図を示す。

【図4】図2のIV-IV線に沿った断面図を示す。

【図5】図2のV-V線に沿った断面図を示す。

【図6】図2のVI-VI線に沿った断面図を示す。

【図7】図2のVII-VII線に沿った断面図を示す。

【図8】図1に示されたカテーテルを利用して案内可能な内視鏡的プロテーゼを示す。

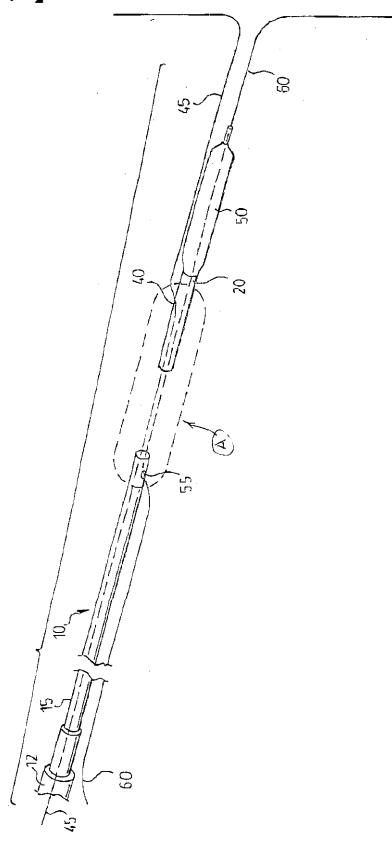
【図9】図1のカテーテルに図8の内視鏡的プロテーゼを取付けたところを示す。

【図10】図1のカテーテルを用いて図8の内視鏡的プロテーゼを動脈瘤を有する二股の体内通路へと案内するのを示す。

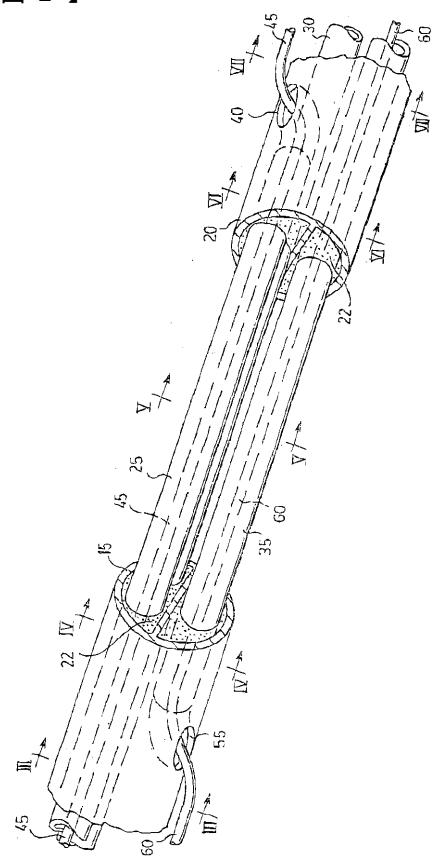
【図11】図8の内視鏡的プロテーゼを採用した後の図10の二股の体内通路の斜視図を

10

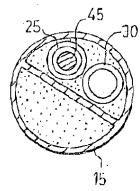
20

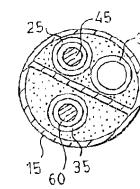

30

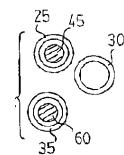
40

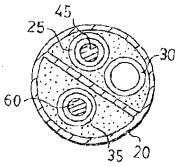

50

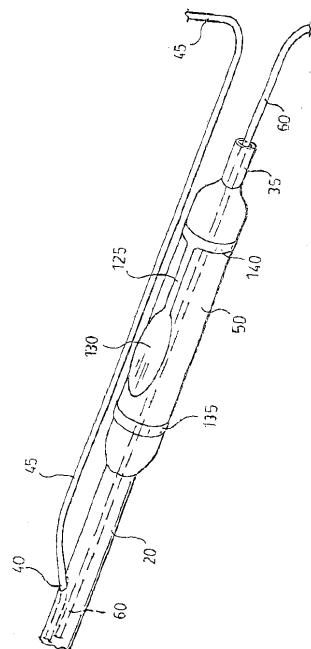
示す。

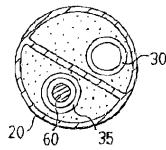

【図1】

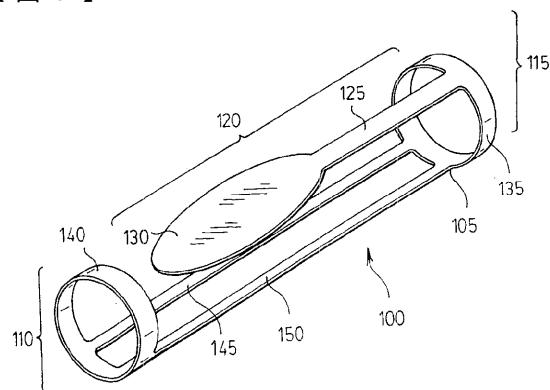

【図2】

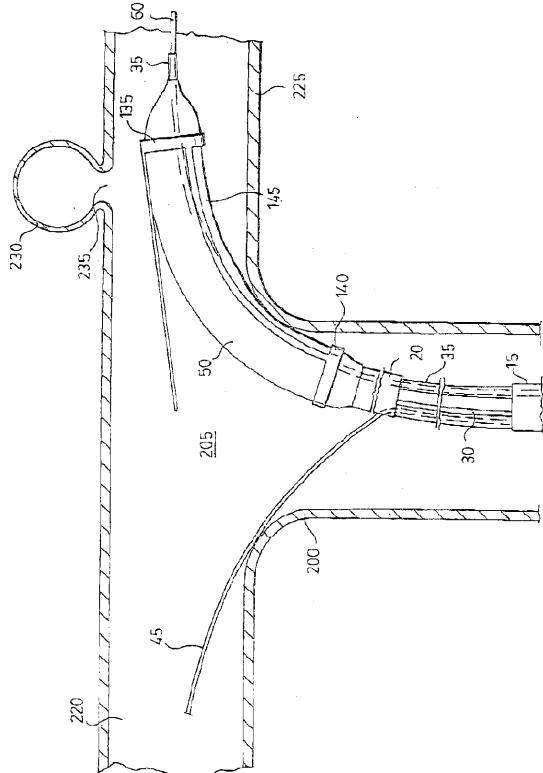

【図3】

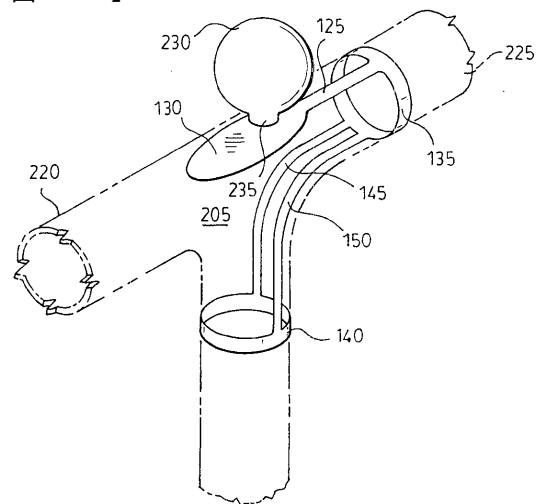

【図4】


【図5】


【図6】


【図9】


【図7】


【図8】

【図10】

【図11】

WO 02/47580 A2

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

— *without international search report and to be republished upon receipt of that report*

WO 02/47580

PCT/CA01/01767

ENDOVASCULAR PROSTHESIS DELIVERY SYSTEMTECHNICAL FIELD

In one of its aspects, the present invention relates to an expandable dilation catheter. In another of its aspects, the present invention relates to a balloon dilation catheter. In yet another of its aspects, the present invention relates to a catheterization kit. In yet another of its aspects, the present invention relates to an endovascular prosthesis-mounted balloon dilation catheter.

BACKGROUND ART

As is known in the art, an aneurysm is an abnormal bulging outward in the wall of an artery. In some cases, the bulging may be in the form of a smooth bulge outward in all directions from the artery - this is known as a "fusiform aneurysm". In other cases, the bulging may be in the form of a sac arising from one side of the artery - this is known as a "saccular aneurysm".

While aneurysms can occur in any artery of the body, it is only those which occur in the brain which lead to the occurrence of a stroke. Most saccular aneurysms which occur in the brain have a neck which extends from the cerebral blood vessel and broadens into a pouch which projects away from the vessel.

The problems caused by such aneurysms can occur in several different ways. For example, if the aneurysm ruptures, blood enters the brain or the subarachnoid space (i.e., the space closely surrounding the brain) - the latter is known as aneurysmal subarachnoid hemorrhage. This followed by one or more of the following symptoms: nausea, vomiting, double vision, neck stiffness and loss of consciousness. Aneurysmal subarachnoid hemorrhage is an emergency medical condition requiring immediate treatment. Indeed, 10-15% of patients with the condition die before reaching the hospital for treatment. More than 50% of patients with the condition will die within the first thirty days after the hemorrhage. Of those patients who survive, approximately half will suffer a permanent stroke. It is typical for such a stroke to occur one to two weeks after the hemorrhage itself from vasospasm in cerebral vessels induced by the subarachnoid hemorrhage. Aneurysms also can cause problems which are not related to bleeding although this is less common. For

WO 02/47580

PCT/CA01/01767

example, an aneurysm can form a blood clot within itself which can break away from the aneurysm and be carried downstream where it has the potential to obstruct an arterial branch causing a stroke. Further, the aneurysm can also press against nerves (this has the potential of resulting in paralysis or abnormal sensation of one eye or of the face) or the adjacent brain (this has the potential of resulting in seizures).

Given the potentially fatal consequences of the aneurysms, particularly brain aneurysms, the art has addressed treatment of aneurysms using various approaches.

Generally, aneurysms may be treated from outside the blood vessels using surgical techniques or from the inside using endovascular techniques (the latter falls 10 under the broad heading of interventional (i.e., non-surgical) techniques).

Surgical techniques usually involve a craniotomy requiring creation of an opening in the skull of the patient through which the surgeon can insert instruments to operate directly on the brain. In one approach, the brain is retracted to expose the vessels from which the aneurysm arises and then the surgeon places a clip across the 15 neck of the aneurysm thereby preventing arterial blood from entering the aneurysm. If there is a clot in the aneurysm, the clip also prevents the clot from entering the artery and obviates the occurrence of a stroke. Upon correct placement of the clip the aneurysm will be obliterated in a matter of minutes. Surgical techniques are the most common treatment for aneurysms. Unfortunately, surgical techniques for treating 20 these conditions are regarded as major surgery involving high risk to the patient and necessitate that the patient have strength even to have a chance to survive the procedure.

As discussed above, endovascular techniques are non-surgical techniques and are typically performed in an angiography suite using a catheter delivery system. 25 Specifically, known endovascular techniques involve using the catheter delivery system to pack the aneurysm with a material which prevents arterial blood from entering the aneurysm - this technique is broadly known as embolization. One example of such an approach is the Guglielmi Detachable Coil which involves intra-aneurysmal occlusion of the aneurysm via a system which utilizes a platinum coil attached to a stainless steel delivery wire and electrolytic detachment. Thus, once the 30 platinum coil has been placed in the aneurysm, it is detached from the stainless steel

WO 02/47580

PCT/CA01/01767

delivery wire by electrolytic dissolution. Specifically, the patient's blood and the saline infuse act as the conductive solutions. The anode is the stainless steel delivery wire and the cathode is the ground needle which is placed in the patient's groin. Once current is transmitted through the stainless steel delivery wire, 5 electrolytic dissolution will occur in the uninsulated section of the stainless steel detachment zone just proximal to the platinum coil (the platinum coil is of course unaffected by electrolysis). Other approaches involve the use of materials such as cellulose acetate polymer to fill the aneurysm sac. While these endovascular approaches are an advance in the art, they are disadvantageous. Specifically, the risks 10 of these endovascular approaches include rupturing the aneurysm during the procedure or causing a stroke due to distal embolization of the device or clot from the aneurysm. Additionally, concern exists regarding the long term results of endovascular aneurysm obliteration using these techniques. Specifically, there is evidence of intra-aneurysmal rearrangement of the packing material and reappearance 15 of the aneurysm on follow-up angiography.

One particular type of brain aneurysm which has proven to be very difficult to treat, particularly using the surgical clipping or endovascular embolization techniques discussed above occurs at the distal basilar artery. This type of aneurysm is a weak outpouching, usually located at the terminal bifurcation of the basilar artery. 20 Successful treatment of this type of aneurysm is very difficult due, at least in part, to the imperative requirement that all the brainstem perforating vessels be spared during surgical clip placement.

Unfortunately, there are occasions when the size, shape and/or location of an 25 aneurysm make both surgical clipping and endovascular embolization not possible for a particular patient. Generally, the prognosis for such patients is not good.

A significant advance in art of endovascular aneurysm occlusion is described in International Publication Number WO 99/40873, published August 19, 1999 and International Publication Number WO 00/47134, published August 12, 2000 [both naming Marotta et al.]. The Marotta device is highly advantageous since it can be 30 navigated to the site of "hard to reach" aneurysms where blockage of the aneurysmal opening may be achieved resulting in obliteration of the aneurysm.

WO 02/47580

PCT/CA01/01767

Despite this significant advance in the art, there is still room for improvement. For example, the Marotta device comprises a so-called "leaf portion" for blockage of the aneurysmal opening. Once properly aligned, the leaf portion is advantageously useful to occlude the aneurysm. However, delivery can be difficult when using conventional balloon dilation catheters, since these catheters are typically used to deliver stents which do not require a specific orientation of the stent in relation to the target body passageway. Further difficulties can be encountered when attempting to deliver and properly orient the Marotta device to a bifurcated body passageway.

Accordingly, it would be desirable to have a catheter adapted to deliver and orient and an endovascular prosthesis in a body passageway.

DISCLOSURE OF THE INVENTION

It is an object of the present invention to provide a novel expandable dilation catheter.

It is another object of the present invention to provide a novel balloon dilation catheter.

It is another object of the present invention to provide a novel catheterization kit.

It is another object of the present invention to provide a novel endovascular prosthesis mounted balloon dilation catheter.

Accordingly, in one of its aspects, the present invention provides a expandable dilation catheter comprising:

a first tubular member disposed in a proximal portion of the portion of the catheter and a second tubular member disposed in a distal portion of the catheter, the first tubular member and the second tubular member being in a spaced relationship with respect to one another;

an expandable member disposed distally of the second tubular member; and

a first lumen and a second lumen disposed in each of the first tubular member and in the second tubular member, the first lumen in communication with an interior of the

WO 02/47580

PCT/CA01/01767

expandable member and the second lumen for receiving a first guidewire, the first tubular member and second tubular member being interconnected by a coupling member.

In another of its aspects, the present invention provides a balloon dilation catheter comprising:

a first tubular member disposed in a proximal portion of the portion of the catheter and a second tubular member disposed in a distal portion of the catheter, the first tubular member and the second tubular member being in a spaced relationship with respect to one another;

10 a balloon member disposed distally of the second tubular member; and

a first lumen, a second lumen and a third lumen disposed in each of the first tubular member and in the second tubular member, the first lumen in communication with an interior of the expandable member, the second lumen for receiving a first guidewire and the third lumen for receiving a second guidewire;

15 wherein the first tubular member and second tubular member are interconnected by at least one of the first lumen, the second lumen and the third lumen.

In another of its aspects, the present invention provides a catheterization kit comprising:

20 a guide catheter;

a pair of guidewires; and

a balloon dilation catheter comprising first tubular member disposed in a proximal portion of the portion of the catheter and a second tubular member disposed in a distal portion of the catheter, the first tubular member and the second tubular member being in a spaced relationship with respect to one another; a balloon member disposed distally of the second tubular member; and a first lumen, a second lumen and a third lumen disposed in each of the first tubular member and in the second tubular member, the first lumen in communication with an interior of the expandable

WO 02/47580

PCT/CA01/01767

member, the second lumen for receiving a first guidewire and the third lumen for receiving a second guidewire; wherein the first tubular member and second tubular member are interconnected by at least one of the first lumen, the second lumen and the third lumen.

5 In yet another of its aspects, the present invention provides an endovascular prosthesis-mounted balloon catheter comprising:

a first tubular member disposed in a proximal portion of the portion of the catheter and a second tubular member disposed in a distal portion of the catheter, the first tubular member and the second tubular member being in a spaced relationship
10 with respect to one another;

a balloon member disposed distally of the second tubular member;

an expandable endovascular prosthesis mounted on the balloon member; and

15 a first lumen and a second lumen disposed in each of the first tubular member and in the second tubular member, the first lumen in communication with an interior of the expandable member and the second lumen for receiving a first guidewire, the first tubular member and second tubular member being interconnected by a coupling member.

Thus, the present inventors have discovered a catheter which may be used advantageously to deliver an endovascular prosthesis to a target body passageway and
20 orient the prosthesis with respect to the body passageway. The present catheter is advantageous for delivery and orientation of an endovascular prosthesis such as the Marotta device referred to hereinabove. A feature of the present catheter is the presence of two tubular members which are spaced apart and interconnected by a coupling member. The nature of the coupling member is not particularly restricted
25 provided that it allows relatively easier torquing or twisting of the spaced apart tubular members compared with a single, continuous tubular member. In one embodiment, this may be achieved by selected the coupling member to have a cross-sectional diameter less than that of both of the tubular members. Preferably, the coupling member is in the form of one or more of the lumen used to inflate the

WO 02/47580

PCT/CA01/01767

expandable member (e.g., the balloon) on the distal end of the catheter and/or to receive the guidewire(s) used to navigate the catheter to the target body passageway.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will be described with reference to the accompanying drawings, in which:

Figure 1 illustrates a perspective view of a preferred embodiment of the present catheter;

Figure 2 illustrates an enlarged view of region A in Figure 1;

Figures 3-7 illustrate sectional views along lines III-III through VII-VII, respectively, in Figure 2;

Figure 8 illustrates an endovascular prosthesis which may be delivered using the catheter illustrated in Figure 1;

Figure 9 illustrates mounting of the endovascular prosthesis of Figure 8 on the catheter of Figure 1;

Figure 10 illustrates delivery of the endovascular prosthesis of Figure 8 using the catheter of Figure 1 to a bifurcated body passageway comprising an aneurysm; and

Figure 11 illustrates the bifurcated body passageway of Figure 10, in perspective view, after deployment of the endovascular prosthesis of Figure 8.

20

BEST MODE FOR CARRYING OUT THE INVENTION

While various preferred embodiments of the present catheter will be described with reference to the Marotta endovascular prosthesis referred to hereinabove, this is for illustrative purposes only. Those skilled in the art will immediately recognize that the present catheter may be used to advantageously deliver and orient other endovascular prostheses where it is desirable to orient the prosthesis in a particular manner.

WO 02/47580

PCT/CA01/01767

With reference to Figures 1-7, there is illustrated a balloon dilation catheter 10. Balloon catheter 10 comprises a first tubular member 15 and a second tubular member 20. Disposed at a proximal portion of first tubular member 15 is a Luer lock 12 (only a portion is illustrated) or similar device. First tubular member 15 and second tubular member 20 are of similar design, each comprising a so-called "double-D" cross-section with each "D" comprising a passageway - see the can be seen particularly in Figures 2-4, 6 and 7.

First tubular member 15 and second tubular member 20 are interconnected by a trio of lumen 25,30,35. As illustrated, lumen 25,30,35 serve to space apart first tubular member 15 and second tubular member 20. Preferably, longitudinal spacing is less than about 10 cm, more preferably in the range of from about 1 cm to about 8 cm, most preferably in the range of from about 1 cm to about 5 cm. Lumen 25,30,35 are secured to first tubular member 15 and to second tubular member 20 by an adhesive 22.

15 Lumen 25 extends throughout first tubular member 15 into a portion of second tubular member 20. Thus, the proximal end of lumen 25 exits from Luer lock 12 in a conventional manner. Second tubular member 20 comprises an opening 40 in communication with lumen 25. As illustrated, lumen 25 receives a guidewire 45 which emanates from opening 40.

20 An expandable balloon 50 is secured to the distal end of second tubular member 20. The nature of balloon 50 and connection to second tubular member 20 is conventional and within the purview of a person skilled in the art.

25 Lumen 30 extends through first tubular member 15, second tubular member and comprises a distal opening (not shown) in communication with an interior of balloon 50. The proximal end of lumen 30 exits from Luer lock 12 in a conventional manner. Thus, those of skill in the art will recognize the lumen 30 is a so-called inflation lumen used for inflation and deflation of balloon 50.

30 Lumen 35 extends from a portion of first tubular member 15 through second tubular member 20 and emanates from balloon 50. First tubular member 15 comprises an opening 55 in communication with lumen 35. As illustrated, lumen 35

WO 02/47580

PCT/CA01/01767

receives a guidewire 60 through opening 55. Guidewire 60 the portion of lumen 35 which emanates from balloon 50.

Lumen 25 contains guidewire 45 in a so-called "over-the-wire" configuration whereas lumen 35 contains guidewire 60 in a so-called "monorail" configuration.

5 The use of the "monorail" configuration facilitates relatively rapid exchange of guidewire 60 - see, for example, United States patent 4,743,982 [Horzewski et al.] and the references cited therein for a general discussion on "monorail" delivery systems and rapid exchange of guidewires using such a system. It is, of course, possible to modify catheter 10 such that lumen 35 contains guidewire 60 in an "over-the-wire" configuration, in effecting yield a "double over-the-wire" configuration.

10

As will be appreciated by those of skill in art, first tubular member 15 and second tubular member 20 are disposed in a spaced relationship (i.e., similar to a single tubular member with a discontinuous portion) and are interconnected to each other by lumen 25,30,35. This allows for first tubular member 15 and second tubular member 20 to be torqued or twisted with respect to one another relatively easily compared to a construction where a single, continuous tubular member is used (i.e., no discontinuous portion). This added relative degree of freedom between first tubular member 15 and second tubular member 20 facilitates orientation of an endovascular prosthesis mounted on balloon 50 as will be described in more detail 15 hereinbelow.

With reference to Figure 8 there is of endovascular prosthesis 100 of similar construction as the Marotta device described hereinabove. Endovascular prosthesis 100 is constructed of a body 105. Body 105 comprises a proximal end 110 and a distal end 115. Endovascular prosthesis 100 further comprises a leaf portion 120 attached to body 105. As illustrated, leaf portion 120 comprises a neck 125 and a head 130. Head 130 is wider than neck 125. In the illustrated embodiment, head 130 of leaf portion 120 points away from distal end 115 (i.e., head 130 of leaf portion 120 points toward proximal end 110).

Body 105 further comprises a pair of rings 135,140 which are interconnected 25 by a pair of struts 145,150. In the illustrated embodiment leaf portion 120 is connected to ring 135. Struts 145,150 preferably are dimensioned to confer to

WO 02/47580

PCT/CA01/01767

prosthesis 100 sufficient integrity while maximizing flexibility to provide enhanced navigation. The purpose of struts 145,150 is to interconnect rings 135,140 while allowing prosthesis 100 to be sufficiently flexible such that it can be navigated to the target body passageway yet be sufficiently expandable such that it can be fixed at the proper location in target body passageway. Struts 145,150 are not particularly important during expansion of prosthesis 100 (i.e., after the point in time at which prosthesis 100 is correctly positioned). Further, as will be apparent to those of skill in the art, leaf portion 120 is independently moveable with respect to proximal end 110 and distal end 115 of prosthesis 100 (in the illustrated embodiment, leaf portion 120 is independently moveable with respect to rings 135,140).

With reference to Figure 9, prosthesis 100 is mounted on balloon 50 of catheter 10 in a conventional manner. For example, rings 135,140 may be crimped on balloon 50 of catheter 10. As shown, prosthesis 100 is mounted on balloon 50 such that neck 125 and 130 of leaf portion 120 are longitudinally aligned with opening 40 in second tubular member.

With reference to Figure 10, delivery and deployment of prosthesis 100 mounted on balloon 50 of catheter 10 will be described.

Thus, there is illustrated a basilar artery 200 which terminates at a junction 205 which bifurcates into pair of secondary arteries 220,225. Interposed between junction 205 and secondary artery 225 is an aneurysm 230. Aneurysm 230 has an opening 235 (shown enlarged for illustrative purposes only) through blood enters and sustains aneurysm 230. In the illustrated embodiment, opening 235 of aneurysm 230 is generally located on the superior surface of the arterial wall.

Guidewires 45,60 are delivered to secondary arteries 220,225, preferably using the guidewire delivery system described in International Publication Number WO 00/07525, published February 17, 2000 [Ricci et al.].

Next catheter 10 having prosthesis 100 mounted on balloon 50 (Figure 9) is advanced over delivered guidewires 45,60 using the configuration illustrated in Figure 1. As balloon 50 approaches junction 205 first tubular member sustains a natural torquing or twisting action as a result of alignment of guidewire 45 occurring with the approach opening 40. This torquing or twisting action is conveyed to lumen 25,30,35

WO 02/47580

PCT/CA01/01767

and then to second tubular member 20. In response to the received torquing or twisting action, second tubular member naturally assumes a position in which lumen 25,30,35 are relatively untwisted and the portion of guidewire 45 emanating from opening 40 and the adjacent portion of catheter 10 are relatively untwisted. The 5 combination of: (i) longitudinal alignment of opening 40 and leaf portion 120 of prosthesis 110, and (ii) spacing of apart of first tubular member 15 and second tubular member 20, advantageously facilitates the "untwisting" effect with the result that leaf portion 120 of prosthesis becomes oriented into substantial alignment with opening 235 of aneurysm 230.

10 Once endovascular prosthesis 100 is in the correct position, balloon 50 is expanded thereby exerting radially outward forces on rings 135,140. Initially, this results in expansion of ring 140 against the wall of both of basilar artery 200 and expansion of ring 135 in secondary artery 220. As expansion of balloon 50 continues, a portion of balloon 50 urges against neck 125 and head 130 of leaf portion 120 15 resulting in urging of leaf portion 120 against the walls of secondary artery 220 in a manner which results in blocking of opening 235 of aneurysm 230.

Next, balloon 50 is deflated and, together with guidewires 45,60, withdrawn from endovascular prosthesis 100. In the illustrated embodiment, endovascular prosthesis 100 is secured in position by rings 135,140 being urged against the walls of 20 secondary artery 220 and basilar artery 200, respectively. Further, in the illustrated embodiment, leaf portion 120 is secured in position by a combination forces against it by the flow of the blood into junction 205 and the inherent forces upon flexure of body 105 to navigate distal end 115 into secondary artery 220. Once leaf portion 120 blocks opening 35, aneurysm 30 is obliterated thereafter - see Figure 11.

25 If opening 235 of aneurysm 230 is offset with respect to the superior surface of the arterial wall, the angle of such offset may be determined by a person skilled in cerebral angiography techniques, including 3-D rendering of the vascular anatomy in question. Once the anatomical angle of offset is determined, prosthesis 100 may be mounted on balloon 50 such that neck 125 and head 130 of leaf portion 120 are longitudinally offset from opening 40 in second tubular member 20 by a similar angle. 30 This facilitates predictable aposition of leaf portion 120 over opening 235 of aneurysm 230.

WO 02/47580

PCT/CA01/01767

While this invention has been described with reference to illustrative embodiments and examples, the description is not intended to be construed in a limiting sense. Thus, various modifications of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to this description. For example, will the tubular member illustrated with reference to the preferred embodiments comprises a so-called double-D cross-section, its possible to use tubular members with other cross-sections such as an o-D (i.e., one passageway having a circular cross-section and the other having a D-shaped cross-section) and the like. It is possible to have the tubular member comprise individual lumen. Further, while the illustrated embodiments relate to a specific embodiment of the Marotta device referred to above, it is possible to advantageously use the present catheter with any endovascular prosthesis which should be specifically oriented with respect to the target body passageway. The includes stents and other expandable prosthesis' disclosed in the Marotta et al. International patent applications referred to above - e.g., it is possible to construct the prothesis using a single expandable anchoring means (e.g., expandable tubular element, etc.) or 3 or more expandable anchoring means (e.g., expandable tubular elements, etc.). It is therefore contemplated that the appended claims will cover any such modifications or embodiments.

All publications, patents and patent applications referred to herein are incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.

WO 02/47580

PCT/CA01/01767

What is claimed is:

1. A expandable dilation catheter comprising:

5 a first tubular member disposed in a proximal portion of the portion of the catheter and a second tubular member disposed in a distal portion of the catheter, the first tubular member and the second tubular member being in a spaced relationship with respect to one another;

10 an expandable member disposed distally of the second tubular member; and a first lumen and a second lumen disposed in each of the first tubular member and in the second tubular member, the first lumen in communication with an interior of the expandable member and the second lumen for receiving a first guidewire, the first tubular member and second tubular member being interconnected by a coupling member.

15 2. The expandable dilation catheter defined in claim 1, wherein the coupling member comprises the first lumen.

3. The expandable dilation catheter defined in claim 1, wherein the coupling member comprises the second lumen.

20 4. The expandable dilation catheter defined in claim 1, wherein the coupling member comprises each of the first lumen and the second lumen.

25 5. The expandable dilation catheter defined in any one of claims 1-3, further comprising a third lumen disposed in each of the first tubular member and the second tubular member, the third lumen for receiving a second guidewire.

6. The expandable dilation catheter defined in claim 5, wherein the coupling member comprises the third lumen.

30 7. The expandable dilation catheter defined in any one of claims 1-6, wherein the first lumen extends along substantially the entire length of the first tubular member.

WO 02/47580

PCT/CA01/01767

8. The expandable dilation catheter defined in any one of claims 1-6, wherein the first lumen extends along a portion of the length of the second tubular member.

9. The expandable dilation catheter defined in any one of claims 1-8, wherein the second tubular member comprises a first aperture from which the first guidewire may exit the second lumen.

10. The expandable dilation catheter defined in any one of claims 1-9, wherein the third lumen extends along substantially the entire length of first tubular member.

11. The expandable dilation catheter defined in any one of claims 1-9, wherein the third lumen extends along a portion of the length of the first tubular member.

12. The expandable dilation catheter defined in claim 11, wherein the first tubular member comprises a second aperture into which the second guidewire may enter the third lumen.

13. The expandable dilation catheter defined in claim 12, wherein the first aperture and the second aperture are substantially opposed in a cross-section of the catheter.

14. The expandable dilation catheter defined in any one of claims 1-13, wherein the third lumen extends along substantially the entire length of the second tubular member.

15. The expandable dilation catheter defined in any one of claims 1-14, wherein the third lumen extends through a distal end of the expandable member.

16. The expandable dilation catheter defined in any one of claims 1-15, wherein the first tubular member comprises a first passageway and a second passageway.

17. The expandable dilation catheter defined in any one of claims 1-15, wherein the second tubular member comprises a first passageway and a second passageway.

WO 02/47580

PCT/CA01/01767

18. The expandable dilation catheter defined in any one of claims 1-15, wherein each of the first tubular member and the second tubular member comprise a first passageway and a second passageway.

5 19. The expandable dilation catheter defined in any one of claims 16-18, wherein the first lumen and the second lumen are disposed in the first passageway.

20. The expandable dilation catheter defined in any one of claims 16-18, wherein the third lumen is disposed in the second passageway.

10 21. The expandable dilation catheter defined in any one of claims 1-20, wherein the expandable member comprises a balloon portion.

15 22. The expandable dilation catheter defined in any one of claims 1-21, wherein the first tubular member and the second tubular member have a substantially circular cross-section.

23. A balloon dilation catheter comprising:

first tubular member disposed in a proximal portion of the portion of the catheter and a second tubular member disposed in a distal portion of the catheter, the first tubular member and the second tubular member being in a spaced relationship with respect to one another;

balloon member disposed distally of the second tubular member; and

first lumen, a second lumen and a third lumen disposed in each of the first tubular member and in the second tubular member, the first lumen in communication with an interior of the expandable member, the second lumen for receiving a first guidewire and the third lumen for receiving a second guidewire;

wherein the first tubular member and second tubular member are interconnected by at least one of the first lumen, the second lumen and the third lumen.

30 24. The balloon dilation catheter defined in claim 23, wherein the first tubular member and the second tubular member are interconnected by at least two of the first lumen, the second lumen and the third lumen.

WO 02/47580

PCT/CA01/01767

25. The balloon dilation catheter defined in claim 23, wherein the first tubular member and the second tubular member are interconnected by each of the first lumen, the second lumen and the third lumen.

5 26. The balloon dilation catheter defined in any one of claims 23-25, wherein the first lumen extends along substantially the entire length of the first tubular member.

27. The balloon dilation catheter defined in any one of claims 23-25, wherein the first lumen extends along a portion of the length of the second tubular member.

10 28. The balloon dilation catheter defined in any one of claims 23-27, wherein the second tubular member comprises a first aperture from which the first guidewire may exit the second lumen.

15 29. The balloon dilation catheter defined in any one of claims 23-27, wherein the third lumen extends along substantially the entire length of first tubular member.

30. The balloon dilation catheter defined in any one of claims 23-27, wherein the third lumen extends along a portion of the length of the first tubular member.

20 31. The balloon dilation catheter defined in claim 30, wherein the first tubular member comprises a second aperture into which the second guidewire may enter the third lumen.

25 32. The balloon dilation catheter defined in claim 31, wherein the first aperture and the second aperture are substantially opposed in a cross-section of the catheter.

33. The balloon dilation catheter defined in any one of claims 23-27, wherein the third lumen extends along substantially the entire length of the second tubular member.

30 34. The balloon dilation catheter defined in claim 23-33, wherein the third lumen extends through a distal end of the expandable member.

WO 02/47580

PCT/CA01/01767

35. The balloon dilation catheter defined in any one of claims 23-34, wherein first tubular member comprises a first passageway and a second passageway.

36. The balloon dilation catheter defined in claim 23-34, wherein the second tubular member comprises a first passageway and a second passageway.

37. The balloon dilation catheter defined in any one of claims 23-34, wherein each of the first tubular member and the second tubular member comprise a first passageway and a second passageway.

10

38. The balloon dilation catheter defined in any one of claims 23-37, wherein the first lumen and the second lumen are disposed in the first passageway.

15

39. The balloon dilation catheter defined in any one of claims 23-37, wherein the third lumen is disposed in the second passageway.

40. The balloon dilation catheter defined in any one of claims 23-37, wherein the first tubular member and the second tubular member have a substantially circular cross-section.

20

41. A catheterization kit comprising:
guide catheter;
pair of guidewires; and
the balloon dilation catheter defined in any one of claims 23-40.

25

42. An endovascular prosthesis-mounted balloon catheter comprising:
first tubular member disposed in a proximal portion of the portion of the catheter and a second tubular member disposed in a distal portion of the catheter, the first tubular member and the second tubular member being in a spaced relationship
30 with respect to one another;
balloon member disposed distally of the second tubular member;
an expandable endovascular prosthesis mounted on the balloon member; and
a first lumen and a second lumen disposed in each of the first tubular member and in the second tubular member, the first lumen in communication with an interior of the

WO 02/47580

PCT/CA01/01767

expandable member and the second lumen for receiving a first guidewire, the first tubular member and second tubular member being interconnected by a coupling member.

5 43. The balloon dilation catheter defined in claim 42, wherein the coupling member comprises the first lumen.

44. The balloon dilation catheter defined in claim 42, wherein the coupling member comprises the second lumen.

10 45. The balloon dilation catheter defined in claim 42, wherein the coupling member comprises each of the first lumen and the second lumen.

46. The balloon dilation catheter defined in any one of claims 42-45, further 15 comprising a third lumen disposed in each of the first tubular member and the second tubular member, the third lumen for receiving a second guidewire.

47. The balloon dilation catheter defined in claim 46, wherein the coupling member comprises the third lumen.

20 48. The balloon dilation catheter defined in any one of claims 42-47, wherein the first lumen extends along substantially the entire length of the first tubular member.

49. The balloon dilation catheter defined in claim 42-47, wherein the first lumen 25 extends along a portion of the length of the second tubular member.

50. The balloon dilation catheter defined in claim 49, wherein the second tubular member comprises a first aperture from which the first guidewire may exit the second lumen.

30 51. The balloon dilation catheter defined in claim 46, wherein the third lumen extends along substantially the entire length of first tubular member.

WO 02/47580

PCT/CA01/01767

52. The balloon dilation catheter defined in claim 46, wherein the third lumen extends along a portion of the length of the first tubular member.

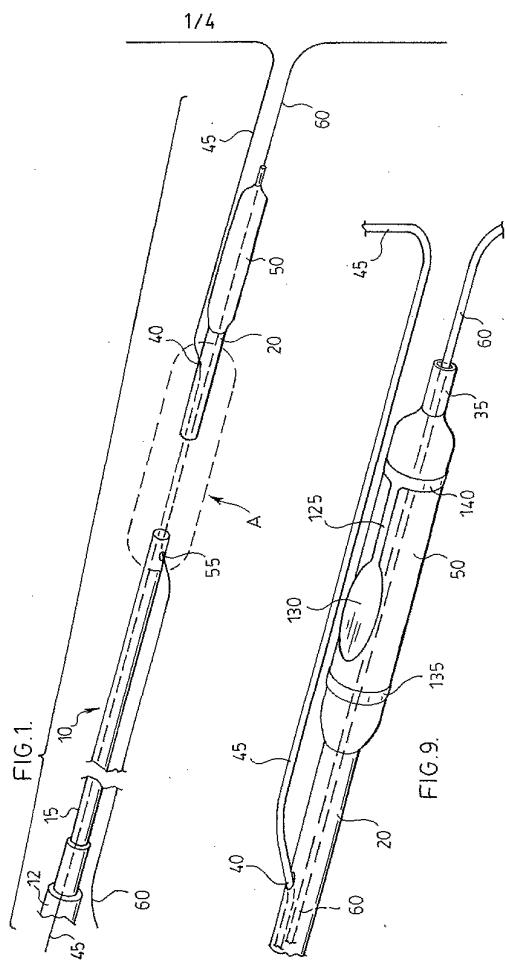
53. The balloon dilation catheter defined in claim 52, wherein the first tubular member comprises a second aperture into which the second guidewire may enter the third lumen.

54. The balloon dilation catheter defined in claim 50, wherein the first aperture and the second aperture are substantially opposed in a cross-section of the catheter.

10

55. The balloon dilation catheter defined in claim 42-54, wherein the endovascular prosthesis comprises an expandable portion having attached thereto a leaf portion.

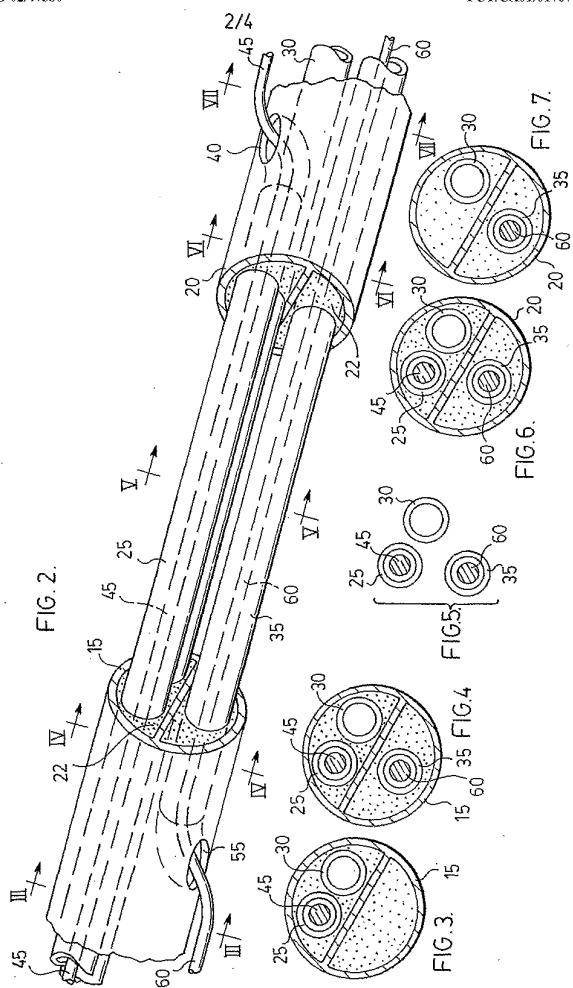
15


56. The balloon dilation catheter defined in claim 55, wherein the leaf portion of the endovascular prosthesis is in substantial longitudinal alignment with the first aperture.

20

57. The balloon dilation catheter defined in any one of claims 42-56, wherein the first tubular member and the second tubular member have a substantially circular cross-section.

WO 02/47580


PCT/CA01/01767

SUBSTITUTE SHEET (RULE 26)

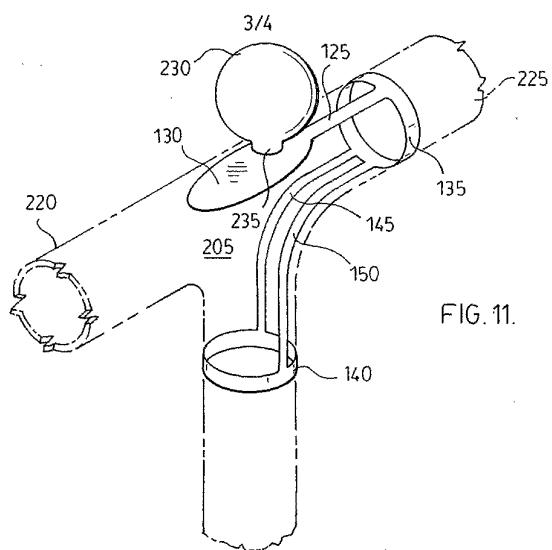
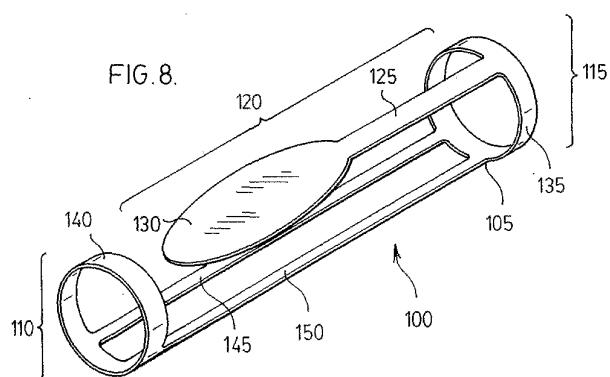
WO 02/47580

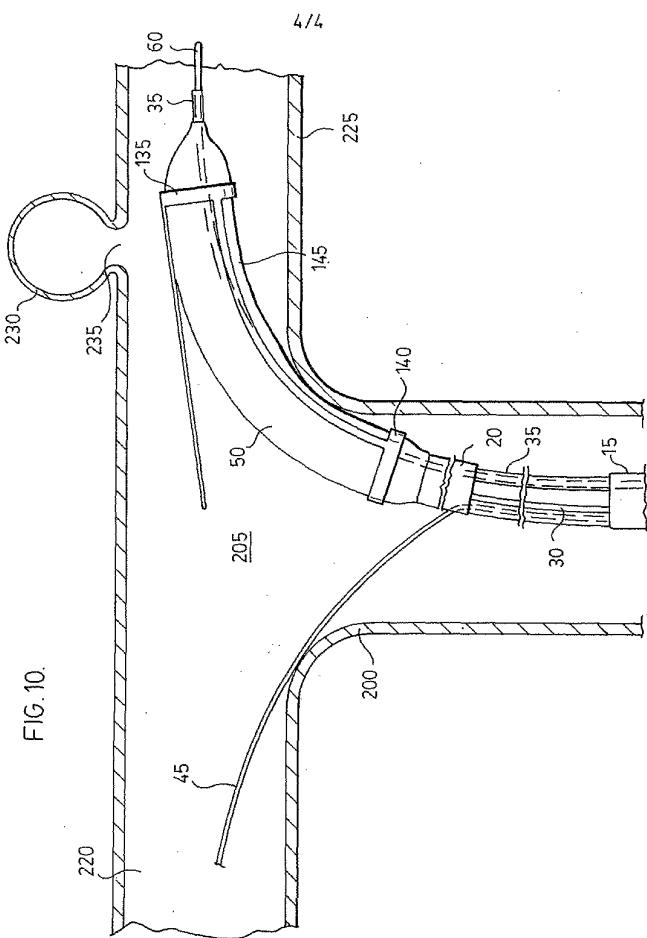
PCT/CA01/01767

SUBSTITUTE SHEET (RULE 26)

WO 02/47580

PCT/CA01/01767


FIG. 11.

SUBSTITUTE SHEET (RULE 26)

WO 02/47580

PCT/CA01/01767

SUBSTITUTE SHEET (RULE 26)

WO 02/047580 A3

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BL, CH, CY, DE, ES, FI, FR,
GB, GR, HU, IT, LU, MC, NL, PT, SI, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

(88) Date of publication of the international search report:
19 September 2002

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International Application No PCT/CA 01/01767
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61F2/06		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 A61F A61M A61B		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 578 009 A (HORZEWSKI MICHAEL J ET AL) 26 November 1996 (1996-11-26) figures 14-17 column 3, line 12 -column 4, line 15 column 4, line 18 - line 53 column 5, line 52 -column 6, line 2	1,42
A	---	2-41, 43-57
X	US 5 484 449 A (AMUNDSON RODNEY R ET AL) 16 January 1996 (1996-01-16) figures 14-17 column 3, line 13 - line 23 column 6, line 9 -column 7, line 17	1,42
A	---	2-41, 43-57
	---	-/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C		<input checked="" type="checkbox"/> Patent family members are listed in annex.
Special categories of cited documents:		
A document defining the general state of the art which is not considered to be of particular relevance		
E earlier document but published on or after the international filing date		
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or for a special reason (as specified)		
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art		
Date of the actual completion of the international search 30 May 2002		Date of mailing of the international search report 06/06/2002
Name and mailing address of the ISA European Patent Office, P.B. 5018 Patenttaan 2 NL - 2200 HV Rijswijk Tel: (+31-70) 340-2040, Tx: 31 651 epo nl, Fax: (+31-70) 340-3016		Authorized officer Mary, C

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT		International Application No. PCT/CA 01/01767
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 634 902 A (DIAZ PEDRO L ET AL) 3 June 1997 (1997-06-03) column 3, line 33 -column 4, line 61 ---	1,23,42
A	US 5 846 259 A (BERTHIAUME WILLIAM A) 8 December 1998 (1998-12-08) column 4, line 1 -column 5, line 15 ---	1,23,42
A	US 6 139 564 A (TEOH CLIFFORD) 31 October 2000 (2000-10-31) the whole document ---	1,23,42
A	US 5 662 702 A (KERANEN VICTOR J) 2 September 1997 (1997-09-02) the whole document -----	1,23,42

Form PCT/ISA210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT Information on patent family members				International Application No PCT/CA 01/01767	
Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
US 5578009	A 26-11-1996	AU 2915495 A WO 9602295 A1 US 5718680 A		16-02-1996 01-02-1996 17-02-1998	
US 5484449	A 16-01-1996	NONE			
US 5634902	A 03-06-1997	DE 19603646 A1 FR 2729862 A1 NL 1002223 C2 NL 1002223 A1		14-08-1996 02-08-1996 26-11-1996 01-08-1996	
US 5846259	A 08-12-1998	US 5591194 A CA 2196324 A1 EP 0773810 A1 JP 2001519675 T WO 9640345 A1		07-01-1997 19-12-1996 21-05-1997 23-10-2001 19-12-1996	
US 6139564	A 31-10-2000	AU 4686699 A EP 1087701 A1 WO 9965397 A1		05-01-2000 04-04-2001 23-12-1999	
US 5662702	A 02-09-1997	US 5609628 A		11-03-1997	

Form PCT/ISA/210 (patent family annex) (July 1992)

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,OM,PH,P,L,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZM,ZW

(71)出願人 503211703

マロッタ、トーマス・エー
カナダ国、エム9エー・2エー6、オンタリオ州、エトビコーグ、レイベンスボーン・クレセント
8

(74)代理人 100058479

弁理士 鈴江 武彦

(74)代理人 100091351

弁理士 河野 哲

(74)代理人 100088683

弁理士 中村 誠

(74)代理人 100108855

弁理士 蔵田 昌俊

(74)代理人 100075672

弁理士 峰 隆司

(74)代理人 100109830

弁理士 福原 淑弘

(74)代理人 100084618

弁理士 村松 貞男

(74)代理人 100092196

弁理士 橋本 良郎

(72)発明者 リッチ、ドナルド・アール

カナダ国、ブイ6アール・1イー4、ブリティッシュ・コロンビア州、バンクーバー、ウエスト・
サード・アベニュー 4443

(72)発明者 マロッタ、トーマス・エー

カナダ国、エム9エー・2エー6、オンタリオ州、エトビコーグ、レイベンスボーン・クレセント
8

(72)発明者 ボーン、ギャシ

カナダ国、ブイ6ゼット・1エル4、ブリティッシュ・コロンビア州、バンクーバー、グランビル
・ストリート 304-1067

(72)発明者 マルコ、アレクセイ

カナダ国、ブイ5ワイ・1ダブリュ9、ブリティッシュ・コロンビア州、バンクーバー、ウエスト
・フォーティーンス・アベニュー 1-108

(72)発明者 マクドーガル、イアン

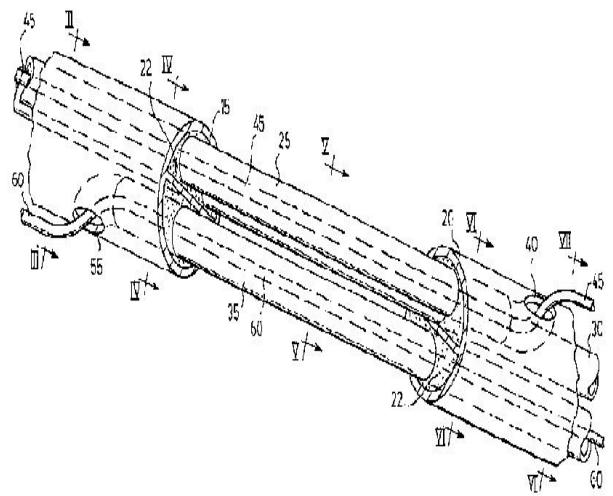
カナダ国、ブイ6エイチ・3ゼット6、ブリティッシュ・コロンビア州、バンクーバー、オーク・
ストリート 554-2660

(72)発明者 ホン、エリオット

カナダ国、ブイ6エイチ・3ゼット6、ブリティッシュ・コロンビア州、バンクーバー、オーク・
ストリート 554-2660

F ターム(参考) 4C060 DD03 DD48 MM25

4C097 AA15 BB01 BB04 CC01 CC04 CC07


4C167 AA07 AA09 AA42 AA56 BB02 BB05 BB07 BB10 BB12 BB26

BB40 CC04 CC08 CC10 DD01 GG36 HH08

专利名称(译)	内窥镜假体引导系统		
公开(公告)号	JP2004514542A	公开(公告)日	2004-05-20
申请号	JP2002549158	申请日	2001-12-14
[标]申请(专利权)人(译)	Pen'ian'emu 格哈德·科赫乔治代理 丰富的唐纳德·厄尔		
申请(专利权)人(译)	笔，伊恩·M. Shukofu，乔治代理 丰富，唐纳德·厄尔 马洛塔，托马斯呃		
[标]发明人	リッチドナルドアール マロッタトーマスエー ボーンギャシ マルコアレクセイ マクドーガルイアン ホンエリオット		
发明人	リッチ、ドナルド・アール マロッタ、トーマス・エー ボーン、ギャシ マルコ、アレクセイ マクドーガル、イアン ホン、エリオット		
IPC分类号	A61B17/12 A61F2/82 A61M25/00 A61F2/06 A61M29/00		
CPC分类号	A61F2/958 A61F2/95 A61F2002/821		
FI分类号	A61B17/12 A61F2/06 A61M29/00 A61M25/00.410.Z		
F-TERM分类号	4C060/DD03 4C060/DD48 4C060/MM25 4C097/AA15 4C097/BB01 4C097/BB04 4C097/CC01 4C097/CC04 4C097/CC07 4C167/AA07 4C167/AA09 4C167/AA42 4C167/AA56 4C167/BB02 4C167/BB05 4C167/BB07 4C167/BB10 4C167/BB12 4C167/BB26 4C167/BB40 4C167/CC04 4C167/CC08 4C167/CC10 4C167/DD01 4C167/GG36 4C167/HH08		
代理人(译)	河野 哲 中村诚		
优先权	60/255381 2000-12-15 US		
其他公开文献	JP4259862B2		
外部链接	Espacenet		

摘要(译)

亲切的代码：可膨胀的扩张导管有效地引导和引导内窥镜假体到目标内部通道。导管具有位于其近端的第一管状构件和位于其远端的第二管状构件。第一管状构件和第二管状构件彼此间隔开。而且，可充气构件（例如，气囊）位于第二管状构件的远端。第一管腔和第二管腔设置在第一管状构件和第二管状构件中的每一个中。第一内腔与可充气构件的内部连通以用作可充气内腔。而且，第二管腔接收第一导丝。第一管状构件和第二管状构件通过连接构件彼此连接。

